首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   240篇
  免费   11篇
  国内免费   6篇
测绘学   2篇
大气科学   35篇
地球物理   58篇
地质学   113篇
海洋学   17篇
天文学   7篇
自然地理   25篇
  2023年   1篇
  2021年   5篇
  2020年   8篇
  2019年   6篇
  2018年   8篇
  2017年   3篇
  2016年   14篇
  2015年   6篇
  2014年   10篇
  2013年   15篇
  2012年   15篇
  2011年   16篇
  2010年   13篇
  2009年   15篇
  2008年   4篇
  2007年   8篇
  2006年   11篇
  2005年   9篇
  2004年   8篇
  2003年   10篇
  2002年   7篇
  2001年   6篇
  2000年   10篇
  1999年   3篇
  1998年   6篇
  1997年   2篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1987年   2篇
  1985年   2篇
  1984年   5篇
  1982年   4篇
  1981年   2篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1973年   2篇
  1972年   1篇
排序方式: 共有257条查询结果,搜索用时 15 毫秒
41.
The Early Permian Gondwana regime succession of the Nilawahan Group is exposed only in the Salt Range of Pakistan. After a prolonged episode of non-deposition that spanned much of the Palaeozoic, the 350?m thick predominantly clastic sequence of the Nilawahan Group records a late glacial and post-glacial episode in which a range of glacio-fluvial, marine and fluvial environments evolved and accumulated. The Early Permian succession of the Salt Range has been classified into four formations, which together indicates a changing climatic regime during the Early Permian in the Salt Range region. The lower-most, Tobra Formation unconformably overlies a Cambrian sequence and is composed of tillite, diamictite and fresh water facies, which contain a floral assemblage (Gangamopteris and Glossopteris) that confirms an Asselian age. The Tobra Formation is overlain by marginal marine deposits of the Dandot Formation (Sakmarian), which contain an abundant brachiopods assemblage (Eurydesma and Conularia). Accumulation of the Dandot Formation was terminated by a regional sea-level fall and a change to the deposition of the fluvial deposits of the Warchha Sandstone (Artinskian). The Warchha Sandstone was deposited by high sinuosity meandering, avulsion prone river with well developed floodplains. This episode of fluvial sedimentation was terminated by a widespread marine transgression, as represented by the abrupt upward transition to the overlying shallow marine Sardhai Formation (Kungurian). The Early Permian Gondwana sequence represented by the Nilawahan Group is capped by predominantly shallow shelf carbonate deposits of the Tethyan realm. The sedimentologic and stratigraphic relationship of these four lithostratigraphic units in the Salt Range reveals a complex stratigraphic history for the Early Permian, which is mainly controlled by eustatic sea-level change due to climatic variation associated with climatic amelioration at the end of the major Gondwana glacial episode, and the gradual regional northward drift to a lower latitude of the Indian plate.  相似文献   
42.
Wet aeolian systems, in which the water table or its capillary fringe are in contact with the accumulation surface, such that moisture influences sedimentation, are well‐known from modern aeolian systems and several ancient preserved successions are recognized from outcrop. One common mechanism by which accumulation of wet aeolian system deposits occurs is via a progressive rise in the relative water‐table level that is coincident with ongoing dune and interdune migration, the angle of dune climb being determined by the ratio between the rate of relative water‐table rise and the rate of downwind migration of the bedforms. Accumulations of wet aeolian system deposits tend to be characterized by units of climbing dune strata separated by units of damp or wet interdune strata. For simple geometric configurations, where the size of the dune and interdune units, the rate of bedform migration and the rate of aggradation all remain constant over space and time, the resulting accumulation has a simple architecture characterized by sets of uniform thickness inclined at a constant angle. However, the dynamic nature of most aeolian dune systems means that such simple configurations are unlikely in nature. The complexity inherent in these systems is accounted for here by a numerical model in which key controlling parameters, including dune and interdune wavelength and spacing, migration rate and aggradation rate, are allowed to vary systematically both spatially (from a dune‐field centre to its margin) and temporally (in response to changes in sediment availability or water‐table level). The range of synthetic stratigraphic architectures generated by the model accounts for all the best‐known examples of aeolian dune and interdune stratigraphic configurations documented from the stratigraphic record. Modelling results have enabled the erection of a scheme for the classification of dune system type whereby the many elaborate stratal architectures known to exist in nature can effectively be accounted for by only four parameters that are allowed to vary over space and time: dune and interdune wavelength and spacing, rate of bedform migration and rate of accumulation. Results have applied implications, including the modelling of reservoir heterogeneity and the prediction of fluid flow pathways of hydrocarbons, water, CO2 and contaminants in subsurface reservoirs and aquifers, in which low permeability interdune units might act as baffles or barriers.  相似文献   
43.
44.
Damping constitutes a major source of uncertainty in dynamic analysis and an open issue to experimental and analytical research. After a thorough review of the current views and approaches existing in literature on damping and its appropriate modelling, this paper focuses on the implications of the available modelling options on analysis. As result of a series of considerations, a damping modelling solution for nonlinear dynamic analyses of cantilever RC walls is suggested within the frame of Direct Displacement-Based Design, supported by comparative analyses on wall structures.  相似文献   
45.
The Warchha Sandstone of the Salt Range of Pakistan is a continental succession that accumulated as part of a meandering, fluvial system during Early Permian times. Several fining-upward depositional cycles are developed, each of which is composed of conglomerate, cross-bedded sandstone and, in their upper parts, bioturbated siltstone and claystone units with distinctive desiccation cracks and carbonate concretions. Clast lithologies are mainly of plutonic and low-grade metamorphic origin, with an additional minor sedimentary component. Textural properties of the sandstone are fine- to coarse-grained, poorly to moderately sorted, sub-angular to sub-rounded, and with generally loose packing. Based on modal analyses, the sandstone is dominantly a feldspathoquartzose (arkose to sub-arkose). Detrital constituents are mainly composed of monocrystalline quartz, feldspars (more K-feldspar than plagioclase) and various types of lithic clasts. XRD and SEM studies indicate that kaolinite is the dominant clay mineral and that it occurs as both allogenic and authigenic forms. However, illite, illite-smectite mixed layer, smectite and chlorite are also recognised in both pores and fractures. Much of the kaolinite was likely derived by the severe chemical weathering of previously deposited basement rocks under the influence of a hot and humid climate. Transported residual clays deposited as part of the matrix of the Warchha Sandstone show coherent links with the sandstone petrofacies, thereby indicating the same likely origin. Illite, smectite and chlorite mainly occur as detrital minerals and as alteration products of weathered acidic igneous and metamorphic rocks. Based primarily on fabric relationship, the sequence of cement formation in the Warchha Sandstone is clay (generally kaolinite), iron oxide, calcareous and siliceous material, before iron-rich illite and occasional mixed layer smectite–illite and rare chlorite. Both petrographic analysis and field characteristics of the sandstone indicate that the source areas were characterised by uplift of a moderate to high relief continental block that was weathered under the influence of hot and humid climatic conditions. The rocks weathered from the source areas included primary granites and gneisses, together with metamorphic basement rocks and minor amounts of sedimentary rocks. Regional palaeogeographic reconstructions indicate that much of the Warchha Sandstone detritus was derived from the Aravalli and Malani ranges and surrounding areas of the Indian Craton to the south and southeast, before being transported to and deposited within the Salt Range region under the influence of a semi-arid to arid climatic regime.  相似文献   
46.
The lower Bomi Group of the eastern Himalayan syntaxis comprises a lithological package of sedimentary and igneous rocks that have been metamorphosed to upper amphibolite-facies conditions. The lower Bomi Group is bounded to the south by the Indus–Yarlung Suture and to the north by unmetamorphosed Paleozoic sediments of the Lhasa terrane. We report U–Pb zircon dating, geochemistry and petrography of gneiss, migmatite, mica schist and marble from the lower Bomi Group and explore their geological implications for the tectonic evolution of the eastern Himalaya. Zircons from the lower Bomi Group are composite. The inherited magmatic zircon cores display 206Pb/238U ages from ~ 74 Ma to ~ 41.5 Ma, indicating a probable source from the Gangdese magmatic arc. The metamorphic overgrowth zircons yielded 206Pb/238U ages ranging from ~ 38 Ma to ~ 23 Ma, that overlap the anatexis time (~ 37 Ma) recorded in the leucosome of the migmatites. Our data indicate that the lower Bomi Group do not represent Precambrian basement of the Lhasa terrane. Instead, the lower Bomi Group may represent sedimentary and igneous rocks of the residual forearc basin, similar to the Tsojiangding Group in the Xigaze area, derived from denudation of the hanging wall rocks during the India–Asia continental collision. We propose that following the Indian–Asian collision, the forearc basin was subducted, together with Himalayan lithologies from the Indian continental slab. The minimum age of detrital magmatic zircons from the supracrustal rocks is ~ 41.5 Ma and their metamorphism had happened at ~ 37 Ma. The short time interval (< 5 Ma) suggests that the tectonic processes associated with the eastern Himalayan syntaxis, encompassing uplift and erosion of the Gangdese terrane, followed by deposition, imbrication and subduction of the forearc basin, were extremely rapid during the Late Eocene.  相似文献   
47.
48.
A brief overview is given of the history of plasmaspheric hiss research, particularly in the context of the recent work by Bortnik et al. (2008) indicating that chorus could be the likely source of plasmaspheric hiss. Previous suggestions given in the literature for this theory are reviewed and then the mechanism itself is outlined, focusing on the characteristic cyclical trajectories executed by typical ray paths that enter into the plasmasphere. A number of directional propagation studies performed in the past are then discussed as well as other work which bears relevance to the present mechanism.  相似文献   
49.
A whole emu egg, with infilling sediment believed to be coeval with egg laying and burial, was found in late Pleistocene lunette sediments near Lake Eyre, central Australia. The stratigraphic context and initial amino acid racemization (AAR) results suggested an age between 25 ka and 35 ka, ideal for a multiple cross-dating comparison. The sediment infilling the egg provided material for luminescence dating that minimized problems of association. Age estimations from AAR, 14C and U series methods were obtained from the eggshell and optically stimulated luminescence (OSL) of the infilling sediment. All methods agreed within their respective dating uncertainties confirming the utility of all four methods. They indicate an age for the emu egg of 31.24 ± 0.34 ka.  相似文献   
50.
Unusual textural and chemical characteristics of disseminated dolomite in Upper Jurassic shelf sediments of the North Sea have provided the basis for a proposed new interpretation of early diagenetic dolomite authigenesis in highly bioturbated marine sandstones. The dolomite is present throughout the Franklin Sandstone Formation of the Franklin and Elgin Fields as discrete, non‐ferroan, generally unzoned, subhedral to highly anhedral ‘jigsaw piece’ crystals. These are of a similar size to the detrital silicate grains and typically account for ≈5% of the rock volume. The dolomite crystals are never seen to form polycrystalline aggregates or concretions, or ever to envelop the adjacent silicate grains. They are uniformly dispersed throughout the sandstones, irrespective of detrital grain size or clay content. Dolomite authigenesis predated all the other significant diagenetic events visible in thin section. The dolomite is overgrown by late diagenetic ankerite, and bulk samples display stable isotope compositions that lie on a mixing trend between these components. Extrapolation of this trend suggests that the dolomite has near‐marine δ18O values and low, positive δ13C values. The unusual textural and chemical characteristics of this dolomite can all be reconciled if it formed in the near‐surface zone of active bioturbation. Sea water provided a plentiful reservoir of Mg and a pore fluid of regionally consistent δ18O. Labile bioclastic debris (e.g. aragonite, Mg‐calcite) supplied isotopically positive carbon to the pore fluids during shallow‐burial dissolution. Such dissolution took place in response to the ambient ‘calcite sea’ conditions, but may have been catalysed by organic matter oxidation reactions. Bioturbation not only ensured that the dissolving carbonate was dispersed throughout the sandstones, but also prohibited coalescence of the dolomite crystals and consequent cementation of the grain framework. Continued exchange of Mg2+ and Ca2+ with the sea‐water reservoir maintained a sufficient Mg/Ca ratio for dolomite (rather than calcite) to form. Irregular crystal shapes resulted from dissolution, of both the dolomite and the enclosed fine calcitic shell debris, before ankerite precipitation during deep‐burial diagenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号